Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 295: 122617, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-36963220

ABSTRACT

Ningxia wolfberry stored for many years may be disguised as fresh wolfberry by unscrupulous traders and sold for huge profits. In this work, the front-face excitation-emission matrix (FF-EEM) fluorescence spectroscopy coupled with interpretable deep learning was proposed to identify the storage year of Ningxia wolfberry in a lossless, fast and accurate way. Alternating trilinear decomposition (ATLD) algorithm was used to decompose the three-way data array obtained by Ningxia wolfberry samples, extracting the chemically meaningful information. Meanwhile, a convolutional neural network (CNN) model for the identification of the storage year of Ningxia wolfberry, called EEMnet, was proposed. The model successfully classified wolfberry samples from different storage years by extracting the subtle feature differences of the spectra, and the correct classification rate of the training set, test set and prediction set was more than 98%. In addition, a series of interpretability analyses were implemented to break the "black box" of the deep learning model. These results indicated that the method based on FF-EEM fluorescence spectroscopy combined with EEMnet could quickly and accurately identify the year of Ningxia wolfberry in a green way, providing a new idea for the identification of the storage years of Chinese medicinal materials.


Subject(s)
Deep Learning , Lycium , Spectrometry, Fluorescence/methods , Lycium/chemistry , Neural Networks, Computer , Algorithms
2.
World J Clin Cases ; 10(29): 10681-10688, 2022 Oct 16.
Article in English | MEDLINE | ID: mdl-36312475

ABSTRACT

BACKGROUND: Cerebrotendinous xanthomatosis is an autosomal recessive disorder of lipid metabolism caused by the mutation of the CYP27A1 gene encoding sterol 27-hydroxylase, an essential enzyme for the conversion of cholesterol to chenodeoxycholic and cholic acids. Cerebrotendinous xanthomatosis is a rare neurological disease with a wide range of clinical symptoms that are easily misdiagnosed. CASE SUMMARY: Here we report the clinical, biochemical, and molecular characterization of a 33-year-old female patient with cerebrotendinous xanthomatosis. The patient developed ataxia and had the typical symptoms of juvenile cataracts, tendon xanthomata, and progressive nervous system dysfunction. Magnetic resonance imaging of the brain revealed bilateral dentate nucleus lesions and white matter abnormalities. This patient was misdiagnosed for 2 years resulting in severe neurological complications. After 2 years of chenodeoxycholic acid treatment, she still presented with ataxia and dysarthria. The pathogenic sites of CYP27A1 were identified as c.255+1G>T and c.1263+1G>T, which were both caused by shear denaturation. CONCLUSION: Cerebrotendinous xanthomatosis requires a multidisciplinary diagnosis that must be made early to avoid progressive neurological degeneration. c.1263+1G>T is a known mutation, but c.255+1G>T is a rare mutation site.

3.
J Chromatogr A ; 1674: 463121, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35605467

ABSTRACT

In this work, a simple and effective strategy for the determination of 12 active compounds of Atractylodes macrocephala Koidz. (AM) was proposed by using high performance liquid chromatography-diode array detection (HPLC-DAD) combined with alternating trilinear decomposition (ATLD) algorithm. Utilizing the "second-order advantage", three common problems in HPLC could be resolved, namely baseline drifts, peak overlaps, and unknown interferences. 12 compounds were rapidly eluted within 12.5 min, and the average spiked recoveries were 80.8-109.9%. The figures of merit reflected the feasibility of the proposed method. Compared with the results of the traditional univariate calibration method based on HPLC-UV technique, the proposed strategy further verified the reliability and simplicity of the mathematical separation. On this basis, partial least squares-discriminant analysis (PLS-DA) was applied to discriminate 113 AM samples from different geographical origins, and variable importance in projection (VIP) was used to further screen the main differential components that affect the regional division of AM. A series of results show that the AM samples from the three regions have obviously different clustering trends. Overall, the strategy is expected to provide a scientific basis for the modern research of medicinal materials, and it is also conducive to the clinical use and market supervision of AM.


Subject(s)
Atractylodes , Calibration , Chemometrics , Chromatography, High Pressure Liquid/methods , Reproducibility of Results
4.
Phytomedicine ; 99: 154020, 2022 May.
Article in English | MEDLINE | ID: mdl-35278902

ABSTRACT

BACKGROUND: Osteoporosis (OP) is characterized as low bone mass, bone microarchitecture breakdown and bone fragility. The increase of oxidative stress could lead to breakdown in the balance of bone formation and resorption which gives rise to OP. Nrf2 is a transcription factor which takes part in oxidative stress and recently was reported that it can regulate the occurrence of OP. Salidroside (SAL) with the efficacies of anti-oxidation, anti-aging and bone-protection is one of the active ingredients in Ligustri Lucidi Fructus, a traditional Chinese medicinal herb. Nevertheless, few studies have explored the potential mechanism of SAL preventing OP development from the perspective of oxidative stress intervention. PURPOSE: This study aimed to investigate the pharmacological effect and molecular mechanisms of SAL on OP. STUDY DESIGNS AND METHODS: A tert-butyl hydroperoxide (t-BHP)-induced oxidative stress model was applied for investigating the effects of SAL in vitro, and an ovariectomized (OVX) model was used for in vivo study on the effect of SAL for OP. Related pharmacodynamic actions and molecular mechanisms of SAL were explored in both rat osteoblasts (ROBs) and OVX rats. Network biology and cell metabolomics were performed for further investigating the correlation and association among potential biomarkers, targets and pathways. RESULTS: SAL reduced levels of ROS and lipid peroxidation (LPO), increased activities of antioxidant enzymes like GPx and SOD, and enhanced osteogenic differentiation in t-BHP-induced ROBs and OVX rats. Mechanistic studies showed SAL prevented OP development and reduced oxidative damage in ROBs and OVX rats through up-regulating Nrf2 expression and facilitating its nuclear translocation. The joint analysis of network biology and cell metabolomics revealed that galactose metabolism and fatty acid metabolism could be the major influenced pathways following treatment with SAL. CONCLUSION: SAL could protect against OP by inhibiting oxidative stress, promoting osteogenesis through the up-regulation of Nrf2 and intervening galactose metabolism and fatty acid metabolism. Our study implied that SAL may be a potential drug to treat OP.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 264: 120267, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34419828

ABSTRACT

In this paper, a fast and efficient analytical strategy was proposed that chemometrics assisted with excitation-emission fluorescence matrices was used to quantify carbaryl (CAR) and thiabendazole (TBZ) in peach, soil and sewage. Even if there are serious overlapped peaks and unknown interferences in fluorescence analysis, the second-order calibration method based on alternating trilinear decomposition (ATLD) algorithm can be used to analyze CAR and TBZ in peach, soil and sewage. The recoveries of CAR and TBZ in peach are 110.4% and 99.7% and their standard deviations are lower than 2.1% and 0.3%, respectively. In addition, the accuracy of the method was assessed with figures of merit as well as intra-day and inter-day precision. The limit of detection, the limit of quantitation of CAR and TBZ in peach are 1.2 ng mL-1 and 0.3 ng mL-1, 3.5 ng mL-1 and 0.8 ng mL-1, respectively. And their root-mean-square error of prediction are 17.0 ng mL-1 and 5.0 ng mL-1 and there are high sensitivity and selectivity in this method. Meanwhile, the results obtained by ATLD algorithm were compared with those obtained by the self-weighted alternate trilinear decomposition algorithm (SWATLD) and the parallel factor analysis (PARAFAC) algorithm, and statistical methods such as the t-test, F-test and the elliptic joint confidence region were used to evaluate for analysis. There were no significant differences among these methods. At last, high performance liquid chromatography-fluorescence detector (HPLC-FLD) was used to evaluate the accuracy and reliability of the proposed method. These results are satisfactory and indicate that the proposed method can be used for accurate and rapid determination of pesticides in complex systems.


Subject(s)
Carbaryl , Thiabendazole , Algorithms , Calibration , Chromatography, High Pressure Liquid , Reproducibility of Results , Spectrometry, Fluorescence
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 269: 120737, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34959035

ABSTRACT

Atractylodes macrocephala Koidz. (AM) is an important plant of traditional Chinese medicine (TCM), and its status can be comparable with ginseng in China. The efficacy and quality of AM are closely related to the place of origin. Hence, we proposed a simple and fast strategy to classify AM from different geographical origins by using multi-way fluorescence fingerprint combined with chemometric methods. AM samples with different dilution levels have different fluorescence characteristics, resulting from different content of fluorescence components and chemical microenvironment. Therefore, AM samples were diluted 5-fold, 10-fold, and 20-fold with 40% ethanol aqueous solution to obtain excitation-emission matrix data, and multi-way (three-way and four-way) data arrays were constructed. And then, the fluorescence fingerprints of AM samples were characterized by three-way and four-way parallel factor analysis (PARAFAC). In addition, four pattern recognition methods were used to classify AM from different provinces. The results show that the four-way data array can provide more abundant information than three-way data arrays, so it is more conducive to sample classification. According to the results obtained from the analysis of four-way data array, the correct classification rate (CCR) of the cross-validation and prediction set obtained by partial least squares-discrimination analysis (PLS-DA) were 90.5% and 100%, respectively. To sum up, the proposed method can be regarded as a powerful, feasible, convenient, reliable, and universal classification tool for the classification of AM samples from different provinces and can be used as a promising method to realize the geographical origin traceability of other TCMs.


Subject(s)
Atractylodes , Medicine, Chinese Traditional , Chemometrics , Discriminant Analysis , Least-Squares Analysis
7.
J Sep Sci ; 44(21): 3914-3923, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34463059

ABSTRACT

An intelligent chemometric second-order calibration method called alternating trilinear decomposition- assisted multivariate curve resolution combined with high-performance liquid chromatography-diode array detection was used for the simultaneous quantification of nine tyrosine kinase inhibitors in three complex biological systems. The method allows simultaneous quantification of the components in different biological matrices without the need for cumbersome pre-treatment steps, complex elution conditions, and complete peak separation. Even with the varying time shift, severe peak overlap, and various unknown interferences, the proposed method can extract pure chromatographic and spectroscopic information for each analyte, while providing accurate qualitative and quantitative results of nine common tyrosine kinase inhibitors in three different biological matrices. All the drugs were eluted in 7 min. The results showed that the nine drugs in each matrix showed good linearity (r > 0.984) in the calibration range with a root mean square error of calibration less than 0.9 µg/mL. The average spiked recoveries of the target analytes were all in the range of 83.4-110.0%, with standard deviations less than 9.0%. Finally, the classical method was used to validate the proposed method. In comparison to the traditional method, the proposed strategy is accuracy, simultaneous, and interference-free.


Subject(s)
Chromatography, High Pressure Liquid/methods , Protein Kinase Inhibitors , Calibration , Chemometrics , Humans , Limit of Detection , Linear Models , Protein Kinase Inhibitors/blood , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/urine , Reproducibility of Results
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 252: 119419, 2021 May 05.
Article in English | MEDLINE | ID: mdl-33524816

ABSTRACT

In this study, a series of green, interference-free fluorimetric detection methods of the excitation-emission matrix coupled with the second-order calibration methods were proposed for the determination of ibrutinib and pralatrexate in various complicated biological fluids. The second-order advantage of the proposed method can overcome the problem of poor selectivity caused by the wide spectra of the fluorescence method. Even in the presence of uncalibrated interferences and severe peak overlap, the signal of pure substance and accurate quantitative results were still obtained. The average recoveries of the three methods were 94.5-104.9% for Alternating Trilinear Decomposition (ATLD) algorithm, 95.5-105.8% for Alternating Normalization Weighted Error (ANWE) algorithm and 94.4-105.7% for Parallel Factor Analysis (PARAFAC) algorithm, respectively. For ATLD, ANWE and PARAFAC, the relative standard deviations (RSD) were lower than 9.2%, 6.8% and 9.2%, and the RMSEPs were less than 8.1, 8.4 and 8.6 ng mL-1, respectively. In addition, the elliptic joint confidence region (EJCR) was adopted to further prove the accuracy of the three methods. The results showed that the three methods can accurately be quantified without significant difference. Good figures of merit parameters were also obtained. Among them, the limit of detection (LOD) and limit of quantification (LOQ) of ibrutinib and pralatrexate were in the range of 0.11-0.76 ng mL-1 and 0.21-1.12 ng mL-1, respectively, which were lower than the corresponding blood concentrations. These results indicate that the proposed method provides a promising, alternative and universal analysis strategy for clinical drug monitoring.


Subject(s)
Algorithms , Aminopterin/analogs & derivatives , Fluorometry , Adenine/analogs & derivatives , Calibration , Limit of Detection , Piperidines , Spectrometry, Fluorescence
9.
Talanta ; 224: 121798, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33379025

ABSTRACT

Three intelligent chemometric multi-way calibration methods including alternating trilinear decomposition (ATLD), alternating trilinear decomposition assisted multivariate curve resolution (ATLD-MCR) and multivariate curve resolution-alternating least squares (MCR-ALS) combined with high performance liquid chromatography-diode array detection (HPLC-DAD) were used to quantify ten molecular targeted anti-tumor drugs in three complex biological matrices (plasma, urine and cell culture media matrices). All analytes can be successfully eluted in 6.5 min. In this experiment, various degrees of time shifts occurred in different samples. While slight time shifts exist in the chromatographic analysis, satisfactory results can be obtained by the three proposed methods. When the time shift was large (5.6 s), the average spiked recoveries obtained by ATLD analysis were in the range of 58.9%-116.5%, which was less than satisfactory. However, the average recoveries obtained by MCR-ALS and ATLD-MCR analysis were 89.8%-114.8% and 84.5%-106.1% respectively, and more satisfactory results were obtained. For further research, ATLD-MCR and MCR-ALS methods were compared, and the results were evaluated by statistical tests. Accuracies of concentrations obtained by them were considered to be no significant difference. In addition, compared with other methods currently published, the proposed chemometric methods combined with the HPLC-DAD can rapidly, simultaneously and accurately determine varieties of molecular targeted anti-tumor drugs in different complex biological matrices even in the presence of severe peak overlaps, severe time shifts, slight baseline drifts and different unknown background interferences.


Subject(s)
Antineoplastic Agents , Molecular Targeted Therapy , Algorithms , Calibration , Chromatography, High Pressure Liquid , Least-Squares Analysis
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 224: 117458, 2020 Jan 05.
Article in English | MEDLINE | ID: mdl-31437766

ABSTRACT

The matter of fluoroquinolone residues in various foods still arouses wide public concern nowadays. In the present work, the strategy of excitation-emission matrix (EEM) fluorescence data coupled with second-order calibration method based on alternating normalization-weighted error (ANWE) algorithm was used to determine ofloxacin, lomefloxacin and ciprofloxacin in milk powder, milk and beef. Owning the unique "second-order advantage", the ANWE-assisted analytical method was proved to successfully and eco-friendly resolve the overlapped fluorescence spectra of multi-component in complex food matrixes without tedious pretreatment steps and sophisticated high-cost instrumentations. The feasibility of the proposed method was validated by experiments. The average spiked recoveries of three fluoroquinolones range from 82.6% to 110.5% with relative standard deviations lower than 7.4%, and the limits of detection range from 0.18 and 2.41 ng mL-1. For further evaluation, analytical figures of merit such as sensitivity and selectivity, as well as the RSDs of intra-day (≦10.6%) and inter-day (≦9.4%) were calculated. The satisfactory analytical results demonstrated that the proposed strategy could be a competitive alternative for simple, rapid and simultaneous determination of multiple fluoroquinolones in animal-derived food samples.


Subject(s)
Drug Residues/analysis , Fluoroquinolones/analysis , Milk/chemistry , Spectrometry, Fluorescence/methods , Animals , Calibration , Cattle , Limit of Detection , Linear Models , Red Meat/analysis , Reproducibility of Results
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 216: 283-289, 2019 Jun 05.
Article in English | MEDLINE | ID: mdl-30909084

ABSTRACT

A new strategy for the determination of bisphenol A (BPA) and diphenyl carbonate (DPC) in polycarbonate plastics has been proposed, combing excitation-emission matrix fluorescence and second-order chemometrics methods. The studied compounds are two of the most frequently used chemical raw materials and intermediates, which is mainly used for bio-chemical products. The method is fast and sensitive as it can avoid tedious pretreatment steps and large amounts of organic solvents consumption. Chemometrics allowed accurate and precise quantification of two target analytes even in the presence of severe spectral overlap, unknown and background interferences, which benefit from "second-order advantages" provided by chemometrics multivariate calibration. Reasonable quantification results were obtained in real plastics samples, with limits of detection for two analytes were 0.04 and 1.18 × 103 ng mL-1 and limits of quantitation were 0.11 and 3.58 × 103 ng mL-1. In addition, the average recoveries for BPA and DPC were 99.35% and 83.50% with relative standard deviation <2.30%. It was proved that the proposed method can be a useful and sensitive tool to the determination of BPA and DPC in different polycarbonate plastics with a simple sample pretreatment at low cost.

12.
Spectrochim Acta A Mol Biomol Spectrosc ; 204: 141-149, 2018 Nov 05.
Article in English | MEDLINE | ID: mdl-29925046

ABSTRACT

In this study, a smart and green analytical method based on the second-order calibration algorithm coupled with excitation-emission matrix (EEM) fluorescence was developed for the determination of rhodamine dyes illegally added into chilli samples. The proposed method not only has the advantage of high sensitivity over the traditional fluorescence method but also fully displays the "second-order advantage". Pure signals of analytes were successfully extracted from severely interferential EEMs profiles via using alternating trilinear decomposition (ATLD) algorithm even in the presence of common fluorescence problems such as scattering, peak overlaps and unknown interferences. It is worth noting that the unknown interferents can denote different kinds of backgrounds, not only refer to a constant background. In addition, the method using interpolation method could avoid the information loss of analytes of interest. The use of "mathematical separation" instead of complicated "chemical or physical separation" strategy can be more effective and environmentally friendly. A series of statistical parameters including figures of merit and RSDs of intra- (≤1.9%) and inter-day (≤6.6%) were calculated to validate the accuracy of the proposed method. Furthermore, the authoritative method of HPLC-FLD was adopted to verify the qualitative and quantitative results of the proposed method. Compared with the two methods, it also showed that the ATLD-EEMs method has the advantages of accuracy, rapidness, simplicity and green, which is expected to be developed as an attractive alternative method for simultaneous and interference-free determination of rhodamine dyes illegally added into complex matrices.


Subject(s)
Capsicum/chemistry , Food Contamination/analysis , Rhodamines/analysis , Spectrometry, Fluorescence/methods , Food Contamination/legislation & jurisprudence , Spices/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...